Evidence of pervasive biologically functional secondary structures within the genomes of eukaryotic single-stranded DNA viruses.

نویسندگان

  • Brejnev Muhizi Muhire
  • Michael Golden
  • Ben Murrell
  • Pierre Lefeuvre
  • Jean-Michel Lett
  • Alistair Gray
  • Art Y F Poon
  • Nobubelo Kwanele Ngandu
  • Yves Semegni
  • Emil Pavlov Tanov
  • Adérito Luis Monjane
  • Gordon William Harkins
  • Arvind Varsani
  • Dionne Natalie Shepherd
  • Darren Patrick Martin
چکیده

Single-stranded DNA (ssDNA) viruses have genomes that are potentially capable of forming complex secondary structures through Watson-Crick base pairing between their constituent nucleotides. A few of the structural elements formed by such base pairings are, in fact, known to have important functions during the replication of many ssDNA viruses. Unknown, however, are (i) whether numerous additional ssDNA virus genomic structural elements predicted to exist by computational DNA folding methods actually exist and (ii) whether those structures that do exist have any biological relevance. We therefore computationally inferred lists of the most evolutionarily conserved structures within a diverse selection of animal- and plant-infecting ssDNA viruses drawn from the families Circoviridae, Anelloviridae, Parvoviridae, Nanoviridae, and Geminiviridae and analyzed these for evidence of natural selection favoring the maintenance of these structures. While we find evidence that is consistent with purifying selection being stronger at nucleotide sites that are predicted to be base paired than at sites predicted to be unpaired, we also find strong associations between sites that are predicted to pair with one another and site pairs that are apparently coevolving in a complementary fashion. Collectively, these results indicate that natural selection actively preserves much of the pervasive secondary structure that is evident within eukaryote-infecting ssDNA virus genomes and, therefore, that much of this structure is biologically functional. Lastly, we provide examples of various highly conserved but completely uncharacterized structural elements that likely have important functions within some of the ssDNA virus genomes analyzed here.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The logic of DNA replication in double-stranded DNA viruses: insights from global analysis of viral genomes

Genomic DNA replication is a complex process that involves multiple proteins. Cellular DNA replication systems are broadly classified into only two types, bacterial and archaeo-eukaryotic. In contrast, double-stranded (ds) DNA viruses feature a much broader diversity of DNA replication machineries. Viruses differ greatly in both completeness and composition of their sets of DNA replication prot...

متن کامل

Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes

By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four gr...

متن کامل

Diversity and comparative genomics of chimeric viruses in Sphagnum-dominated peatlands

A new group of viruses carrying naturally chimeric single-stranded (ss) DNA genomes that encompass genes derived from eukaryotic ssRNA and ssDNA viruses has been recently identified by metagenomic studies. The host range, genomic diversity, and abundance of these chimeric viruses, referred to as cruciviruses, remain largely unknown. In this article, we assembled and analyzed thirty-seven new cr...

متن کامل

RNA Virus Replication Complexes

The majority of viruses infecting animals and plants today are RNA viruses [1]. There are double-stranded (ds) RNA viruses with dsRNA genomes, as well as (+) and (2)RNA viruses whose genomes are single-stranded (ss) RNA of either positive or negative polarity. RNA viruses have small genomes that rarely exceed 30 kb in size, and a large portion of their genomes is used to encode proteins involve...

متن کامل

Origins and evolution of viruses of eukaryotes: The ultimate modularity.

Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-strande...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 88 4  شماره 

صفحات  -

تاریخ انتشار 2014